Şimdiyse Chicago Üniversitesinde çalışan veri bilimci ve sosyal bilimciler, şiddet ve mülkiyet suçlarındaki kamusal verilerden zaman ve coğrafi konumlara ait kalıpları öğrenerek suçu önceden tahmin eden yeni bir algoritma geliştirmişler. Model, gelecekte işlenecek suçları bir hafta önceden yaklaşık %90 doğrulukla tahmin edebiliyor.
Araştırma takımı, ayrı bir modelde ise polislerin suça verdiği yanıtları inceleyerek olaylardan sonra gerçekleşen tutuklanma sayılarını analiz etmiş ve söz konusu oranları farklı sosyoekonomik durumlara sahip muhitler arasında karşılaştırmış. Araştırmacılar daha zengin bölgelerde işlenen suçların daha fazla tutuklanmayla sonuçlanırken, dezavantajlı muhitlerde tutuklanma sayısının düştüğünü görmüş. Yoksul semtlerde işlenen suçların daha fazla tutuklamaya yol açmaması, polislerin yanıt verirken ve kanunları uygularken önyargılı davrandığını akla getiriyor.
Chicago Üniversitesinde çalışan yardımcı tıp profesörü ve altı gün önce Nature Human Behavior bülteninde yayımlanan makalenin kıdemli yazarı Ishanu Chattopadyay, şöyle aktarıyor: “Sistemi zorladığınız zaman, zengin muhitte işlenen suça cevaben daha fazla kişiyi tutuklamanın daha fazla kaynak gerektirdiğini ve polis kaynaklarının daha düşük sosyoekonomik statüye sahip alanlardan çekilmesine sebep olduğunu gördük.”
Araç, Şikago Belediyesi’nden alınan ve iki geniş kategoride rapor edilen olayların yer aldığı tarihsel verilerle test edilip doğrulanmış. Kategoriler şiddet suçlarını (cinayet, saldırı ve darp) ve mülkiyet suçlarını (soygun, hırsızlık ve araç hırsızlığı) kapsıyor. Bu veriler kullanılmış çünkü kolluk kuvvetlerine tarihsel bir güvensizliğin ve yetersiz işbirliğinin bulunduğu şehir bölgelerinde polise bildirilmesi en muhtemel olaylar bunlarmış. Bu gibi suçlarda uyuşturucu suçları, trafik cezaları ve diğer kabahatlerde olduğu gibi yaptırım önyargılarına karşı daha düşük bir yatkınlık olduğu da görülüyor.
Suç önleme konusunda yürütülen önceki çalışmalarda sık sık epidemik veya sismik bir yaklaşım kullanılmış; yani suç, “sıcak noktalarda” ortaya çıkıp civardaki bölgelere yayılan bir unsur şeklinde tasvir edilmiş. Ancak bu araçlarda, şehirlerin karmaşık sosyal ortamı yakalanamıyor ve suç ile kolluk kuvvetinin etkileri arasındaki ilişki hesaba katılmıyor.
Chicago Üniversitesi ve Santa Fe Enstitüsünde çalışan sosyolog eş yazar James Evans, “Uzamsal modellerde, şehrin doğal topolojisi görmezden geliniyor” diyor. “Ulaşım ağları şehirlere, yaya yollarına, tren ve otobüs hatlarına riayet ediyor. İletişim ağları benzer sosyoekonomik arka plana sahip alanlara riayet ediyor. Bizim modelimiz, bu bağlantıların keşfedilmesini mümkün kılıyor.”
Münferit olayların zaman ve mekan koordinatlarına bakarak suçu izole eden yeni model, örüntüleri tespit edip gelecekteki olayları tahmin ediyor. Şehri yaklaşık 300 metrelik uzamsal levhalara bölüyor ve önyargılara eğilimli geleneksel semt sınırlarını ya da siyasi sınırları temel almak yerine, bu alanlar içerisindeki suçu tahmin ediyor. Model, ABD’deki diğer yedi şehirden alınan verilerle de benzer bir performans sergilemiş (Atlanta, Austin, Detroit, Los Angeles, Philadelphia, Portland ve San Francisco).